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Abstract. We use Constraint Satisfaction methods to enumerate and
construct set-theoretic solutions to the Yang–Baxter equation of small
size. We show that there are 321,931 involutive solutions of size nine,
4,895,272 involutive solutions of size ten and 422,449,480 non-involutive
solution of size eight. Our method is then used to enumerate non-
involutive biquandles.

1. Introduction

The Yang–Baxter equation (YBE) was first introduced in the field of
statistical mechanics and for several decades it has been studied in math-
ematics and physics [5, 41]. Recent progress in set-theoretic solutions to
the YBE shed new light on the importance of this equation in algebra and
combinatorics [13,18,19,21,25,27,34,38].

A set-theoretic solution to the YBE is a pair (X, r), where X is a set and
r : X ×X → X ×X is a bijective map such that

(r × id)(id×r)(r × id) = (id×r)(r × id)(id×r)

holds, where the juxtaposition denotes the usual composition of maps. Note
that this is a functional equation in the space of maps X3 → X3, where
X3 = X ×X ×X.

Example 1.1 (permutation solutions over sets). If X is a non-empty set
and σ : X → X and τ : X → X are bijections, then the pair (X, r), where

r : X ×X → X ×X, r(x, y) = (σ(y), τ(x)),

is a set-theoretical solution if and only if σ and τ commute. Indeed, on the
one hand,

(r × id)(id×r)(r × id)(x, y, z) = (r × id)(id×r)(σ(y), τ(x), z)

= (r × id)(σ(y), σ(z), τ2(x))

= (σ2(z), τσ(y), τ2(x))

and, on the other hand,

(id×r)(r × id)(id×r)(x, y, z) = (id×r)(r × id)(x, σ(z), τ(y))

= (id×r)(σ2(z), τ(x), τ(y))

= (σ2(z), στ(y), τ2(x)).
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We say that the solutions (X, r) and (Y, s) are isomorphic if there is a
bijective map f : X → Y such that

(f × f)r = s(f × f).

From the combinatorial perspective certain types of solutions are partic-
ularly important; these are called non-degenerate solutions. By convention,
if (X, r) is a set-theoretic solution to the YBE, we write

r(x, y) = (σx(y), τy(x)).

The solution (X, r) is then said to be non-degenerate if the maps σx and τx
are bijective for all x ∈ X.

Convention 1.2. A solution will always be a non-degenerate set-theoretic
solution to the YBE. We will only consider finite solutions.

Set-theoretic solutions to the YBE attracted a lot of attention and lead to
several interesting connections between group theory, ring theory and combi-
natorics. The combinatorial version of the celebrated Yang–Baxter equation
was first formulated by Drinfel’d in [12] and considered later in [13, 21] for
involutive solutions and in [27,37] for arbitrary solutions. Set-theoretic solu-
tions are known to have deep connections with bijective 1-cocycles, ordered
groups, groups of I-type, regular subgroups, radical rings, skew braces, nil
rings, homology theory, Hopf–Galois extensions [9, 10,34,36].

The main result in this article is an explicit classification of solutions
to the YBE of small size. This is achieved by using some combinatorial
ideas closely connected to the Yang–Baxter equation, Constraint Satisfac-
tion methods [15, 22] and, in particular, the constraint modelling assistant
Savile Row [31], and the computational algebra package GAP [16]. Similar
techniques have been used to enumerate semi-groups of order 6 10, see [11].

The combination of these techniques allows us to build a huge database of
involutive and non-involutive solutions to the YBE, a good and useful source
of examples that gives an explicit and direct way to approach some open
problems concerning the YBE. The database is freely available as a library
for GAP at https://github.com/vendramin/enumeration, with DOI name
10.5281/zenodo.5180745.

In [13] Etingof, Schedler and Soloviev constructed all involutive solutions
of size 6 8. We summarize our findings on involutive solutions in the fol-
lowing statement.

Theorem 1.3.

(1) Up to isomorphism, there are 321,931 non-degenerate involutive set-
theoretic solutions to the Yang–Baxter equation of size nine.

(2) Up to isomorphism, there are 4,895,272 non-degenerate involutive
set-theoretic solutions to the Yang–Baxter equation of size ten.

Our methods can be easily adapted to construct racks of small size. Racks
are particular types of solutions to the YBE that play a fundamental role in
combinatorial knot theory, see Section 3.1. Using the 16,023 isomorphism
classes of racks of size eight, we obtain the following result for non-involutive
solutions of size eight.

https://github.com/vendramin/enumeration
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Theorem 1.4. There are 422,449,480 non-isomorphic non-degenerate non-
involutive set-theoretic solutions to the Yang–Baxter equation of size eight.

No previous constructions of non-involutive solutions were known.
Our methods could be used to construct solutions of other sizes. How-

ever, the number of non-involutive solutions of size nine is expected to be
extremely big. With 16,023 racks of size eight we constructed 422,449,480
non-involutive solutions, so the number of non-involutive solutions of size
nine is expected to be enormous, as there are 159,526 racks of size nine.

The paper is organized as follows. In Section 2 we compute the num-
ber of involutive solutions. This is done by using a constraint satisfaction
program and the language of cycle sets. The algorithm is described at the
beginning of the section. As an application we enumerate several types of
solutions such as indecomposable, irretractable and multipermutation so-
lutions. We also enumerate counterexamples to a well-known conjecture of
Gateva–Ivanova [17]. Finally, in Section 3 we use a similar algorithm and the
same computational techniques to enumerate racks, non-involutive solutions
and, in particular, non-involutive biquandles.

2. Involutive solutions

A solution (X, r) is said to be involutive if r2 = id. An involutive solution
(X, r) is said to be irretractable if τx 6= τy for all x 6= y. Note that this
is equivalent to σx 6= σy for all x 6= y, as TσxT

−1 = τ−1
x holds for all

x ∈ X, where T : X → X, T (x) = τ−1
x (x), see [13, Proposition 2.2]. An

involutive solution (X, r) is said to be square-free if T (x) = x for all x ∈ X,
or equivalently if r(x, x) = (x, x) for all x ∈ X.

If (X, r) is an involutive solution, we consider over X the equivalence
relation given by

x ∼ y ⇐⇒ τx = τy.

This equivalence relation induces an involutive solution over the set of equiv-
alence classes X/∼, known as the retraction Ret(X, r) of (X, r). An involu-
tive solution (X, r) is a multipermutation solution if there exists n such that
|Retn(X, r)| = 1, where Retn+1(X, r) = Ret(Retn(X, r)). Multipermuta-
tion solutions generalize those in Example 1.1.

The permutation group of an involutive solution (X, r) is defined as the
subgroup G(X, r) of SymX generated by the set {τx : x ∈ X}. An involu-
tive solution (X, r) is said to be indecomposable if the group G(X, r) acts
transitively on X and decomposable otherwise.

To construct all isomorphism classes of non-degenerate involutive solu-
tions, we will use the language of cycle sets, introduced by Rump in [33]. A
cycle set is a pair (X, ·), where X is a set and X ×X → X, (x, y) 7→ x · y,
is a binary operation such that the following conditions are satisfied:

(1) Each map ϕx : X → X, y 7→ x · y, is bijective, and
(2) (x · y) · (x · z) = (y · x) · (y · z) for all x, y, z ∈ X.

A cycle set (X, ·) is said to be non-degenerate if the mapX → X, x 7→ x·x,
is bijective. Rump proved that non-degenerate involutive solutions are in
bijective correspondence with non-degenerate cycle sets, i.e.

{non-degenerate involutive solutions} ←→ {non-degenerate cycle sets}.
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The correspondence is given by the following formulas: If (X, r) is a solution,
then (X, ·), where x · y = τ−1

x (y), is a non-degenerate cycle set. Conversely,
if (X, ·) is a cycle set, then (X, r), where

r(x, y) = ((y ∗ x) · y, y ∗ x)

is a non-degenerate involutive solution, where y∗x = z if and only if y ·z = x.

Example 2.1. Let X = {1, 2, 3} and r(x, y) = (σx(y), τy(x)), where

σ1 = id, σ2 = σ3 = (23), τ1 = τ2 = τ3 = (23).

This solution is involutive, decomposable and multipermutation. The map
T : X → X is the permutation (23). The cycle set associated to (X, r) is
given by the permutations

ϕ1 = id, ϕ2 = (23), ϕ3 = (23),

Example 2.2. Let X = {1, 2, 3, 4} and r(x, y) = (σx(y), τy(x)), where

σ1 = (34), σ2 = (1324), σ3 = (1423), σ4 = (12),

τ1 = (24), τ2 = (1432), τ3 = (1234), τ4 = (13).

This involutive solution is irretractable, so it is not multipermutation. The
permutation group of (X, r) is G(X, r) = 〈(34), (1324), (1423), (12)〉 ' D4,
the dihedral group of order eight. This group acts transitively on X, so
(X, r) is indecomposable. Note that T : X → X is the permutation (23).
The cycle set associated to (X, r) is given by the permutations

ϕ1 = (24), ϕ2 = (1234), ϕ3 = (1432), ϕ4 = (13).

The solutions (X, r) and (Y, s) are isomorphic if and only if their asso-
ciated cycle sets are isomorphic, which means that there is a bijective map
f : X → Y such that f(x1 · x2) = f(x1) · f(x2) for all x1, x2 ∈ X. Note that
one can write this formula as

fϕxf
−1 = ϕf(x)

for all x ∈ X.
One can translate the definitions given at the beginning of the section in

the language of cycle sets. For example, the permutation group of a cycle
set (X, ·) is then defined as the group generated by the set {ϕx : x ∈ X},
and a cycle set is said to be indecomposable (resp. decomposable) if its
permutation group acts transitively (resp. intransitively) on X.

For a cycle set (X, ·) let T : X → X be the map given by T (x) = x · x.
By definition, the cycle set is non-degenerate if and only if the map T is
bijective. In [13, Proposition 2.2], Etingof, Schedler and Soloviev proved
that T is always bijective whenever the solution is finite, thus finite cycle
sets are regular. This was proved independently by Rump in [33].

A cycle set (X, ·), where X = {1, 2, . . . , n}, is encoded in a table

M = (Mi,j)16i,j6n, Mi,j = ϕi(j) = i · j.

This means that the rows of M are the permutations ϕ1, . . . , ϕn defining
the cycle set structure on X. The principal diagonal of M is precisely the
bijective map T : X → X, x 7→ x · x.



ENUMERATION OF SOLUTIONS 5

Example 2.3. The cycle set corresponding to the solution of Example 2.1
can be described by the matrix

M =

1 2 3
1 3 2
1 3 2

 .

Example 2.4. The cycle set corresponding to the solution of Example 2.2
can be described by the matrix

M =


1 4 3 2
2 3 4 1
4 1 2 3
3 2 1 4

 .

To construct all involutive solutions we need to find all possible matrices
M ∈ Zn×n with coefficients in {1, 2, . . . , n} such that

(1) for each i the elements Mi,j are all different,
(2) the elements of the principal diagonal of M are all different, and
(3) MMi,j ,Mi,k

= MMj,i,Mj,k
holds for all i, j, k ∈ {1, . . . , n}.

Since the map T is bijective, the diagonal (Mi,i)16i6n has n different
elements. This fact is used to reduce our search space. The general idea
goes back to Plemmons [32], but in our particular case is based on the
following lemma:

Lemma 2.5. Let n ∈ N and (X, ·) be a cycle set of size n. Let T : X → X,
T (x) = x · x and T1 ∈ Symn. If T1 and T are conjugate, then there exists a
cycle set structure • on X such that (X, •) ' (X, ·) and T1(x) = x • x for
all x ∈ X.

Proof. Let γ ∈ Symn be such that T1 = γ−1Tγ. A direct calculation shows
that the operation y•z = γ−1(γ(y)·γ(z)) turns X into a cycle set isomorphic
to (X, ·) and such that

y • y = γ−1(γ(y) · γ(y)) = γ−1(T (γ(y))) = (γ−1Tγ)(y)

holds for all y ∈ X. �

Lemma 2.5 implies that there are only a small number of diagonals to
consider, each diagonal being a representative of a conjugacy class in the
symmetric group Symn. Thus the original problem is divided into p(n)
problems, where p(n) is the number of partitions of n. In the particular case
of solutions of size nine, this means that there are p(9) = 30 independent
cases to consider. For size ten, there are p(10) = 42 independent cases to
consider.

To construct non-isomorphic solutions we shall need the following nota-
tion: If g ∈ Symn and M is a matrix, we denote by Mg the matrix given
by

(Mg)i,j = g−1
(
Mg(i),g(j)

)
for all i, j ∈ {1, . . . , n}. To avoid expensive isomorphism checking, we are
interested in those matrices M such that

M 6lex M
g (2.1)
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for all g in the centralizer CSymn
(T ) of the permutation T in Symn, where

lex stands for the lexicographic ordering given by A 6lex B if and only if

(A1,1, A1,2, . . . , A1,n, A2,1, A2,2, . . . , An,n)

6 (B1,1, B1,2, . . . , B1,n, B2,1, B2,2, . . . , Bn,n)

with lexicographical order. This symmetry breaking is in general very hard
to implement, as in this case the number of constraints will be extremely
large. This happens for example when T = id or T is a transposition.
To deal with this problem, we consider the constraint (2.1) only for those
permutations that belong to a certain subset S of Symn. This is called
partial symmetry breaking, see Remark 2.9 below for details. It should be
noted that the use of proper subsets of the centralizer of T produce some
superfluous solutions and hence some repetitions should be removed by other
computational methods.

We briefly describe our method to remove repetitions. Constraint satis-
faction methods produce a list of solutions. Among the solutions in this list,
only those minimal in their orbits are needed. A GAP script parses the list
and, for each solution, checks whether or not the solution is minimal with
respect to the lexicographic ordering inside its orbit. This stage of the pro-
cess is mostly related with permutation groups and, in general, GAP deals
with them in a friendly and very efficient way.

The enumeration of involutive solutions of size 6 8 first appeared in [13].
Table 2.1 shows some numbers corresponding to solutions of size 6 10. New
results are presented in shaded cells. It should be noted that our numbers
differ sightly from those of [13, Table 1], as our table contains two solutions
of size eight that are not present in previous calculations.

Our approach with constraint programming needs about ten minutes to
construct all those solutions of size 6 8 up to isomorphism. The calculations
for solutions of size nine took less than four hours and for size ten it took
several days, see Tables 2.2, 2.3 and 2.4 for some runtimes. They were both
performed in an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with 32GB
RAM. The database of involutive solutions of size 6 9 needs about 90MB.
Almost 2GB are needed to store all involutive solutions of size 10.

n 2 3 4 5 6 7 8 9 10
solutions 2 5 23 88 595 3,456 34,530 321,931 4,895,272

square-free 1 2 5 17 68 336 2,041 15,534 150,957
ind. 1 1 5 1 10 1 100 16 36
m.p. 2 5 21 84 554 3,295 32,155 305,916 4,606,440

irretractable 0 0 2 4 9 13 191 685 3,590

Table 2.1. Involutive solutions of size 6 10.

For size 6 7 our calculations coincide with those in [13], but differ by two
for n = 8 when the map T an 8-cycle (see Examples 2.6 and 2.7 below). We
contacted the authors of [13] regarding the aforementioned discrepancy and
they found the missing solutions after a re-run of their own code.
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Example 2.6. Let X = {1, 2, . . . , 8} and r(x, y) = (σx(y), τy(x)), where

σ1 = σ5 = (16345278), σ2 = σ6 = (12745638),

σ3 = σ7 = (12385674), σ4 = σ8 = (16785234),

τ1 = τ5 = (18365472), τ2 = τ6 = (14765832),

τ3 = τ7 = (14325876), τ4 = τ8 = (18725436).

Then (X, r) is an indecomposable and multipermutation involutive solution.

Example 2.7. Let X = {1, 2, . . . , 8} and r(x, y) = (σx(y), τy(x)), where

σ1 = σ5 = (1278)(3456), σ2 = σ6 = (1238)(4567),

σ3 = σ7 = (1234)(5678), σ4 = σ8 = (1678)(2345),

τ1 = τ5 = (1832)(4765), τ2 = τ6 = (1432)(5876),

τ3 = τ7 = (1876)(2543), τ4 = τ8 = (1872)(3654).

Then (X, r) is an indecomposable and multipermutation involutive solution.

Remark 2.8. The involutive solutions of Examples 2.6 and 2.7 are mul-
tipermutation and indecomposable solutions. This means that there are
34,530 solutions of size eight, 100 of them are indecomposable and 39 are
multipermutation and indecomposable.

Remark 2.9. As mentioned before, for some diagonals T the centralizer
turns out to be too big for our computational resources. A sample S of
elements of CSymn

(T ) is to be chosen to make the constraint computations
feasible. To construct solutions of size n ∈ {9, 10}, taking S as the full
centralizer CSymn

(T ) of the permutation T in Symn works well for small
centralizers. For big centralizers, as it is the case when T = id or a trans-
position, the standard heuristic local search suggests to look at the subset
of CSymn

(T ) consisting of permutations moving a small number of points
of {1, 2, . . . , n} (at most three usually suffices), as most violations of the
minimality condition involve few entries of the matrix. We also include a
small generating set of CSymn

(T ), since we do not want to lose information
by inadvertently ignoring permutations that change certain labels. These
particular choices of sets S work well in our setting and allow us to con-
struct solutions in a reasonable time. The partial symmetry breaking tech-
nique described in this paragraph and some of its variations were studied by
McDonald and Smith in [28] and the automation of these techniques were
studied by Jefferson and Petrie in [24].
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n T Solutions CPU time
9 (123456789) 9 3 minutes

(12345678) 104 6 minutes
(1234567) 35 2 minutes
(123456) 1,176 2 minutes

10 (123456789a) 20 10 hours
(123456789) 81 11 hours
(12345678) 720 9 hours
(1234567) 238 2 hours
(123456) 9,103 2 hours

Table 2.2. Some runtimes for constructing involutive solu-
tions of size n ∈ {9, 10} with S = CSymn

(T ). In these cases
there is no need to check if some solutions are isomorphic.

n T Solutions CPU time
9 (12345) 780 2 minutes

(1234) 11,320 3 minutes
(123) 13,061 4 minutes

(12)(34)(56)(78) 24,345 6 minutes
(12)(34)(56) 52,866 4 minutes

(12)(34) 61,438 8 minutes
(12) 41,732 50 minutes

Table 2.3. Some runtimes for constructing involutive solu-
tions of size nine with S being a generating set of CSymn

(T ).

n T Solutions CPU time
9 (12345) 780 1 minute

(1234) 11,320 1 minute
(123) 13,061 2 minutes

(12)(34)(56)(78) 24,345 17 minutes
(12)(34)(56) 52,866 9 minutes

(12)(34) 61,438 7 minutes
(12) 41,732 11 minutes
id 15,534 1 hour 20 minutes

10 (123) 143,267 2 days
(12)(34)(56)(78)(9a) 178,782 2 days 7 hours

(12)(34)(56)(78) 560,592 2 days
(12)(34)(56) 855,536 10 hours

(12)(34) 807,084 8 hours
(12) 474,153 17 hours
id 150,957 6 days

Table 2.4. Some runtimes for constructing involutive so-
lutions of size n ∈ {9, 10}. In these cases S is the set of
permutations of CSymn

(T ) that move 6 3 points.
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In [17] Gateva–Ivanova conjectured that all finite square-free solutions are
retractable. Despite the fact that the conjecture holds in several cases (see [1,
8,20,29]) a counterexample was found in [39]. From a given counterexample
one then constructs other counterexamples by different methods, see [3,
7]. It turns out that constructing essentially new counterexamples to the
conjecture seems to be quite challenging.

For n ∈ N let g(n) be the number of isomorphism classes of counterex-
amples to Gateva–Ivanova conjecture. Computer calculations show that
g(n) = 0 if n 6 7. Other values of g(n) are shown in Table 2.5.

n 8 9 10 11
g(n) 1 5 12 23

Table 2.5. Some values of g(n).

The determination of the exact value of g(9) took about 7 minutes, g(10)
took 3 hours and g(11) took four days. The calculations were performed in
an Intel(R) Xeon(R) CPU E5-2670, 2.60GHz, with 32GB RAM.

3. Non-involutive solutions

The method presented in Section 2 is now used to compute non-involutive
solutions. This time, we translate the problem into the language of skew
cycle sets. First we need basic definitions of the theory of racks.

3.1. Racks. A rack is a pair (X, .), where X is a set and X × X → X,
(x, y) 7→ x.y, is a binary operation on X such that the following conditions
are satisfied:

(1) Each map X → X, y 7→ x . y is bijective, and
(2) x . (y . z) = (x . y) . (x . z) for all x, y, z ∈ X.

We can use the ideas presented in the previous section to construct finite
racks up to isomorphisms. However, algorithms to construct and enumerate
finite racks of small size are already known, see for example in [2, 6, 23,40].

As we need racks to construct arbitrary solutions to the YBE, it is con-
venient to recall that the construction problem for racks can be formulated
as follows: We need to find all matrices R ∈ Zn×n with coefficients in
{1, 2, . . . , n} such that

(1) for each i the elements Ri,j are all different,
(2) the elements of the principal diagonal of R are all different, and
(3) Ri,Rj,k

= RRi,j ,Ri,k
holds for all i, j, k ∈ {1, . . . , n}.

To construct racks we can use the trick of considering only representatives
of conjugacy classes of the diagonal and then keep only those matrices which
are minimal in their orbits, with respect to the lexicographical order.

For n ∈ N, let r(n) be the number of isomorphism classes of racks of
size n. Some values of r(n) appear in Table 3.1. These values of r(n)
were computed by our method based on constraint programming. A better
approach to the enumeration of racks of small size appears in [40].
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n 2 3 4 5 6 7 8 9
r(n) 2 6 19 74 353 2,080 160,23 159,526

Table 3.1. Enumeration of racks.

3.2. Non-involutive solutions. The theory of cycle sets can be general-
ized to deal with non-involutive solutions to the YBE, see for example [35].
A skew cycle set is a triple (X, ·, .), where (X, .) is a rack and X×X → X,
(x, y) 7→ x · y, is a binary operation such that

(1) The maps ϕx : X → X, y 7→ x · y, are bijective,
(2) (x · (x . y)) · (x · z) = (y · x) · (y · z) for all x, y, z ∈ X, and
(3) x · (y . z) = (x · y) . (x · z) for all x, y, z ∈ X.

As it happens in the involutive case, finite solutions to the YBE are in
bijective correspondence with skew cycle sets, i.e.

{non-degenerate solutions} ←→ {non-degenerate skew cycle sets} (3.1)

The correspondence is given as follows. If (X, r) is a solution, then the skew
cycle set on X is given by

x · y = τ−1
x (y), x . y = τxστ−1

y (x)(y).

Conversely, if X is a skew cycle set, then

r(x, y) = ((y ∗ x) · ((y ∗ x) . y), y ∗ x)

is a solution, where y ∗ x = z if and only if y · z = x. We refer to [26] for
more information on the interaction between solutions and their associated
racks.

Remark 3.1. Under the bijective correspondence (3.1), involutive solutions
correspond to the cycle sets defined in Section 2.

We now translate the problem of constructing all finite solutions into a
problem suitable for constraint programming. Given a matrix R correspond-
ing to a rack of size n, we want to find all possible matrices M ∈ Zn×n with
coefficients in {1, 2, . . . , n} such that

(1) for each i the elements Mi,j are all different,
(2) the elements of the principal diagonal of M are all different,
(3) MMi,Ri,j

,Mi,k
= MMj,i,Mk,l

holds for all i, j, k ∈ {1, . . . , n}, and

(4) Mi,Rj,k
= RMi,j ,Mi,k

for all i, j, k ∈ {1, . . . , n}.
We can exclude the trivial rack from our algorithm, as involutive solutions

were computed in Section 2. It only remains to deal with the isomorphism
problem. Thus we are interested in those matrices M such that

M 6lex M
g

for all g in the stabilizer of the rack R, where lex stands for the lexicographic
ordering on matrices described in Section 2. This symmetry breaking is in
general easy to implement, as stabilizers of racks tend to be small.

For n ∈ N let s(n) be the number of isomorphism classes of non-involutive
solutions of size n. We summarize our calculations in Table 3.2.
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n 2 3 4 5 6 7 8
s(n) 2 21 230 3,519 100,071 4,602,720 422,449,480

Table 3.2. Enumeration of non-involutive solutions.

The calculations for s(n) for all n 6 6 took about 10 minutes, s(7) needed
2 hours and 17 minutes and s(8) took about one day. The database of non-
involutive solutions needs about 750MB for solutions of size 6 7 and around
100GB for solutions of size eight.

3.3. Non-involutive biquandles. Recall that a biquandle is a solution
such that its associated rack is a quandle, that means that

x . x = τxστ−1
x (x)(x) = x

for all x ∈ X. In particular, involutive solutions are biquandles. Enumera-
tion of biquandles of small size appear in [4, 14,30].

For n ∈ N let b(n) be the number of isomorphism classes of non-involutive
biquandles of size n. The enumeration of non-involutive biquandles appear
in Table 3.3.

n 3 4 5 6 7 8
b(n) 10 75 974 18,548 621,414 37,836,551

Table 3.3. Enumeration of non-involutive biquandles.
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